Proc Natl Acad Sci U S A

2023
Yang HW, Lee S, Berry BC, Yang D, Zheng S, Carroll RS, Park PJ, Johnson MD. A role for mutations in AK9 and other genes affecting ependymal cells in idiopathic normal pressure hydrocephalus. PNAS 2023;120(51)Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is an enigmatic neurological disorder that develops after age 60 and is characterized by gait difficulty, dementia, and incontinence. Recently, we reported that heterozygous CWH43 deletions may cause iNPH. Here, we identify mutations affecting nine additional genes (AK9RXFP2, PRKD1, HAVCR1, OTOG, MYO7A, NOTCH1, SPG11, and MYH13) that are statistically enriched among iNPH patients. The encoded proteins are all highly expressed in choroid plexus and ependymal cells, and most have been associated with cilia. Damaging mutations in AK9, which encodes an adenylate kinase, were detected in 9.6% of iNPH patients. Mice homozygous for an iNPH-associated AK9 mutation displayed normal cilia structure and number, but decreased cilia motility and beat frequency, communicating hydrocephalus, and balance impairment. AK9+/− mice displayed normal brain development and behavior until early adulthood, but subsequently developed communicating hydrocephalus. Together, our findings suggest that heterozygous mutations that impair ventricular epithelial function may contribute to iNPH.
pdf
2020
Huang AY, Li P, Rodin RE, Kim SN, Dou Y, Kenny CJ, Akula SK, Hodge RD, Bakken TE, Miller JA, Lein ES, Park PJ, Lee EA, Walsh CA. Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. Proc Natl Acad Sci U S A 2020;117(25):13886-13895.Abstract
Elucidating the lineage relationships among different cell types is key to understanding human brain development. Here we developed parallel RNA and DNA analysis after deep sequencing (PRDD-seq), which combines RNA analysis of neuronal cell types with analysis of nested spontaneous DNA somatic mutations as cell lineage markers, identified from joint analysis of single-cell and bulk DNA sequencing by single-cell MosaicHunter (scMH). PRDD-seq enables simultaneous reconstruction of neuronal cell type, cell lineage, and sequential neuronal formation ("birthdate") in postmortem human cerebral cortex. Analysis of two human brains showed remarkable quantitative details that relate mutation mosaic frequency to clonal patterns, confirming an early divergence of precursors for excitatory and inhibitory neurons, and an "inside-out" layer formation of excitatory neurons as seen in other species. In addition our analysis allows an estimate of excitatory neuron-restricted precursors (about 10) that generate the excitatory neurons within a cortical column. Inhibitory neurons showed complex, subtype-specific patterns of neurogenesis, including some patterns of development conserved relative to mouse, but also some aspects of primate cortical interneuron development not seen in mouse. PRDD-seq can be broadly applied to characterize cell identity and lineage from diverse archival samples with single-cell resolution and in potentially any developmental or disease condition.
pdf
2015
Bersani F, Lee E, Kharchenko PV, Xu AW, Liu M, Xega K, MacKenzie OC, Brannigan BW, Wittner BS, Jung H, Ramaswamy S, Park PJ, Maheswaran S, Ting DT, Haber DA. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci U S A 2015;112(49):15148-53.Abstract

Aberrant transcription of the pericentromeric human satellite II (HSATII) repeat is present in a wide variety of epithelial cancers. In deriving experimental systems to study its deregulation, we observed that HSATII expression is induced in colon cancer cells cultured as xenografts or under nonadherent conditions in vitro, but it is rapidly lost in standard 2D cultures. Unexpectedly, physiological induction of endogenous HSATII RNA, as well as introduction of synthetic HSATII transcripts, generated cDNA intermediates in the form of DNA/RNA hybrids. Single molecule sequencing of tumor xenografts showed that HSATII RNA-derived DNA (rdDNA) molecules are stably incorporated within pericentromeric loci. Suppression of RT activity using small molecule inhibitors reduced HSATII copy gain. Analysis of whole-genome sequencing data revealed that HSATII copy number gain is a common feature in primary human colon tumors and is associated with a lower overall survival. Together, our observations suggest that cancer-associated derepression of specific repetitive sequences can promote their RNA-driven genomic expansion, with potential implications on pericentromeric architecture.

pdf
2014
Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, Lee S, Hadjipanayis AG, Ivanova EV, Wilkerson MD, Protopopov A, Yang L, Seth S, Song X, Tang J, Ren X, Zhang J, Pantazi A, Santoso N, Xu AW, Mahadeshwar H, Wheeler DA, Haddad RI, Jung J, Ojesina AI, Issaeva N, Yarbrough WG, Hayes ND, Grandis JR, El-Naggar AK, Meyerson M, Park PJ, Chin L, Seidman JG, Hammerman PS, Kucherlapati R, Cancer Genome Atlas Network TCGA. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci U S A 2014;111(43):15544-9.Abstract

Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.

pdf
Merlo P, Frost B, Peng S, Yang YJ, Park PJ, Feany M. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A 2014;111(50):18055-60.Abstract

DNA damage has been implicated in neurodegenerative disorders, including Alzheimer's disease and other tauopathies, but the consequences of genotoxic stress to postmitotic neurons are poorly understood. Here we demonstrate that p53, a key mediator of the DNA damage response, plays a neuroprotective role in a Drosophila model of tauopathy. Further, through a whole-genome ChIP-chip analysis, we identify genes controlled by p53 in postmitotic neurons. We genetically validate a specific pathway, synaptic function, in p53-mediated neuroprotection. We then demonstrate that the control of synaptic genes by p53 is conserved in mammals. Collectively, our results implicate synaptic function as a central target in p53-dependent protection from neurodegeneration.

pdf
2013
Gokcumen O, Tischler V, Tica J, Zhu Q, Iskow RC, Lee E, Fritz MH-Y, Langdon A, Stütz AM, Pavlidis P, Benes V, Mills RE, Park PJ, Lee C, Korbel JO. Primate genome architecture influences structural variation mechanisms and functional consequences. Proc Natl Acad Sci U S A 2013;110(39):15764-9.Abstract

Although nucleotide resolution maps of genomic structural variants (SVs) have provided insights into the origin and impact of phenotypic diversity in humans, comparable maps in nonhuman primates have thus far been lacking. Using massively parallel DNA sequencing, we constructed fine-resolution genomic structural variation maps in five chimpanzees, five orang-utans, and five rhesus macaques. The SV maps, which are comprised of thousands of deletions, duplications, and mobile element insertions, revealed a high activity of retrotransposition in macaques compared with great apes. By comparison, nonallelic homologous recombination is specifically active in the great apes, which is correlated with architectural differences between the genomes of great apes and macaque. Transcriptome analyses across nonhuman primates and humans revealed effects of species-specific whole-gene duplication on gene expression. We identified 13 gene duplications coinciding with the species-specific gain of tissue-specific gene expression in keeping with a role of gene duplication in the promotion of diversification and the acquisition of unique functions. Differences in the present day activity of SV formation mechanisms that our study revealed may contribute to ongoing diversification and adaptation of great ape and Old World monkey lineages.

pdf
Tolstorukov MY*, Sansam CG*, Lu P*, Koellhoffer EC, Helming KC, Alver BH, Tillman EJ, Evans JA, Wilson BG, Park PJ**, Roberts CWM**. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc Natl Acad Sci U S A 2013;110(25):10165-70.Abstract

Precise nucleosome-positioning patterns at promoters are thought to be crucial for faithful transcriptional regulation. However, the mechanisms by which these patterns are established, are dynamically maintained, and subsequently contribute to transcriptional control are poorly understood. The switch/sucrose non-fermentable chromatin remodeling complex, also known as the Brg1 associated factors complex, is a master developmental regulator and tumor suppressor capable of mobilizing nucleosomes in biochemical assays. However, its role in establishing the nucleosome landscape in vivo is unclear. Here we have inactivated Snf5 and Brg1, core subunits of the mammalian Swi/Snf complex, to evaluate their effects on chromatin structure and transcription levels genomewide. We find that inactivation of either subunit leads to disruptions of specific nucleosome patterning combined with a loss of overall nucleosome occupancy at a large number of promoters, regardless of their association with CpG islands. These rearrangements are accompanied by gene expression changes that promote cell proliferation. Collectively, these findings define a direct relationship between chromatin-remodeling complexes, chromatin structure, and transcriptional regulation.

pdf
2011
Xi R, Hadjipanayis AG, Luquette LJ, Kim T-M, Lee E, Zhang J, Johnson MD, Muzny DM, Wheeler DA, Gibbs RA, Kucherlapati R, Park PJ. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc Natl Acad Sci U S A 2011;108(46):E1128-36.Abstract

DNA copy number variations (CNVs) play an important role in the pathogenesis and progression of cancer and confer susceptibility to a variety of human disorders. Array comparative genomic hybridization has been used widely to identify CNVs genome wide, but the next-generation sequencing technology provides an opportunity to characterize CNVs genome wide with unprecedented resolution. In this study, we developed an algorithm to detect CNVs from whole-genome sequencing data and applied it to a newly sequenced glioblastoma genome with a matched control. This read-depth algorithm, called BIC-seq, can accurately and efficiently identify CNVs via minimizing the Bayesian information criterion. Using BIC-seq, we identified hundreds of CNVs as small as 40 bp in the cancer genome sequenced at 10× coverage, whereas we could only detect large CNVs (> 15 kb) in the array comparative genomic hybridization profiles for the same genome. Eighty percent (14/16) of the small variants tested (110 bp to 14 kb) were experimentally validated by quantitative PCR, demonstrating high sensitivity and true positive rate of the algorithm. We also extended the algorithm to detect recurrent CNVs in multiple samples as well as deriving error bars for breakpoints using a Gibbs sampling approach. We propose this statistical approach as a principled yet practical and efficient method to estimate CNVs in whole-genome sequencing data.

pdf
2010
Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A 2010;107(5):2183-8.Abstract

Using a multidimensional genomic data set on glioblastoma from The Cancer Genome Atlas, we identified hsa-miR-26a as a cooperating component of a frequently occurring amplicon that also contains CDK4 and CENTG1, two oncogenes that regulate the RB1 and PI3 kinase/AKT pathways, respectively. By integrating DNA copy number, mRNA, microRNA, and DNA methylation data, we identified functionally relevant targets of miR-26a in glioblastoma, including PTEN, RB1, and MAP3K2/MEKK2. We demonstrate that miR-26a alone can transform cells and it promotes glioblastoma cell growth in vitro and in the mouse brain by decreasing PTEN, RB1, and MAP3K2/MEKK2 protein expression, thereby increasing AKT activation, promoting proliferation, and decreasing c-JUN N-terminal kinase-dependent apoptosis. Overexpression of miR-26a in PTEN-competent and PTEN-deficient glioblastoma cells promoted tumor growth in vivo, and it further increased growth in cells overexpressing CDK4 or CENTG1. Importantly, glioblastoma patients harboring this amplification displayed markedly decreased survival. Thus, hsa-miR-26a, CDK4, and CENTG1 comprise a functionally integrated oncomir/oncogene DNA cluster that promotes aggressiveness in human cancers by cooperatively targeting the RB1, PI3K/AKT, and JNK pathways.

pdf
2005
Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 2005;102(38):13544-9.Abstract

Accurate and rapid identification of perturbed pathways through the analysis of genome-wide expression profiles facilitates the generation of biological hypotheses. We propose a statistical framework for determining whether a specified group of genes for a pathway has a coordinated association with a phenotype of interest. Several issues on proper hypothesis-testing procedures are clarified. In particular, it is shown that the differences in the correlation structure of each set of genes can lead to a biased comparison among gene sets unless a normalization procedure is applied. We propose statistical tests for two important but different aspects of association for each group of genes. This approach has more statistical power than currently available methods and can result in the discovery of statistically significant pathways that are not detected by other methods. This method is applied to data sets involving diabetes, inflammatory myopathies, and Alzheimer's disease, using gene sets we compiled from various public databases. In the case of inflammatory myopathies, we have correctly identified the known cytotoxic T lymphocyte-mediated autoimmunity in inclusion body myositis. Furthermore, we predicted the presence of dendritic cells in inclusion body myositis and of an IFN-alpha/beta response in dermatomyositis, neither of which was previously described. These predictions have been subsequently corroborated by immunohistochemistry.

pdf