Genome Research

2019
Wang S, Chen J, Garcia SP, Liang X, Zhang F, Yan P, Yu H, Wei W, Li Z, Wang J, Le H, Han Z, Luo X, Day DS, Stevens SM, Zhang Y, Park PJ, Liu Z-jie, Sun K, Yuan G-C, Pu WT, Zhang B. A dynamic and integrated epigenetic program at distal regions orchestrates transcriptional responses to VEGFA. Genome Research 2019;29:193-207.Abstract
Cell behaviors are dictated by epigenetic and transcriptional programs. Little is known about how extracellular stimuli modulate these programs to reshape gene expression and control cell behavioral responses. Here, we interrogated the epigenetic and transcriptional response of endothelial cells to VEGFA treatment and found rapid chromatin changes that mediate broad transcriptomic alterations. VEGFA-responsive genes were associated with active promoters, but changes in promoter histone marks were not tightly linked to gene expression changes. VEGFA altered transcription factor occupancy and the distal epigenetic landscape, which profoundly contributed to VEGFA-dependent changes in gene expression. Integration of gene expression, dynamic enhancer, and transcription factor occupancy changes induced by VEGFA yielded a VEGFA-regulated transcriptional regulatory network, which revealed that the small MAF transcription factors are master regulators of the VEGFA transcriptional program and angiogenesis. Collectively these results revealed that extracellular stimuli rapidly reconfigure the chromatin landscape to coordinately regulate biological responses.
2018
Fan J*, Lee HO*, Lee S, Ryu DE, Lee S, Xue C, Kim SJ, Kim K, Barkas N, Park PJ, Park WY, Karchenko PV. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. Genome Research 2018;28(8):1217-1227.Abstract
Characterization of intratumoral heterogeneity is critical to cancer therapy, as the presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss of heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct the underlying subclonal architecture. By examining several tumor types, we show that HoneyBADGER is effective at identifying deletions, amplifications, and copy-neutral loss-of-heterozygosity events and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure and were likely driven by alternative, nonclonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer.