Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of chromatin structure on sequence variability in the human genome

Abstract

DNA sequence variations in individual genomes give rise to different phenotypes within the same species. One mechanism in this process is the alteration of chromatin structure due to sequence variation that influences gene regulation. We composed a high-confidence collection of human single-nucleotide polymorphisms and indels based on analysis of publicly available sequencing data and investigated whether the DNA loci associated with stable nucleosome positions are protected against mutations. We addressed how the sequence variation reflects the occupancy profiles of nucleosomes bearing different epigenetic modifications on genome scale. We found that indels are depleted around nucleosome positions of all considered types, whereas single-nucleotide polymorphisms are enriched around the positions of bulk nucleosomes but depleted around the positions of epigenetically modified nucleosomes. These findings indicate an increased level of conservation for the sequences associated with epigenetically modified nucleosomes, highlighting complex organization of the human chromatin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide distributions of indel and SNP events.
Figure 2: Distribution of indels (red), SNPs (green) and stable nucleosome (nuc) positions from combined set (black) around boundaries between introns and exons.
Figure 3: Distribution of indels (red), SNPs (green) and nucleosome positions (black) around TSSs and TESs of human genes.
Figure 4: Distribution of SNP frequencies around stable nucleosome positions.
Figure 5: Interplay of chromatin-mediated mutation bias and selection can shape sequence variation profiles (compare to schematic illustration in ref. 38).

Similar content being viewed by others

References

  1. Jiang, C. & Pugh, B.F. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    Article  CAS  Google Scholar 

  2. Schones, D.E. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nat. Rev. Genet. 9, 179–191 (2008).

    Article  CAS  Google Scholar 

  3. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–456 (2009).

    Article  CAS  Google Scholar 

  4. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  Google Scholar 

  5. Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16, 847–852 (2009).

    Article  CAS  Google Scholar 

  6. Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).

    Article  CAS  Google Scholar 

  7. Tolstorukov, M.Y., Kharchenko, P.V., Goldman, J.A., Kingston, R.E. & Park, P.J. Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. Genome Res. 19, 967–977 (2009).

    Article  CAS  Google Scholar 

  8. Boulikas, T. Evolutionary consequences of nonrandom damage and repair of chromatin domains. J. Mol. Evol. 35, 156–180 (1992).

    Article  CAS  Google Scholar 

  9. Suter, B. & Thoma, F. DNA-repair by photolyase reveals dynamic properties of nucleosome positioning in vivo. J. Mol. Biol. 319, 395–406 (2002).

    Article  CAS  Google Scholar 

  10. Washietl, S., Machne, R. & Goldman, N. Evolutionary footprints of nucleosome positions in yeast. Trends Genet. 24, 583–587 (2008).

    Article  CAS  Google Scholar 

  11. Higasa, K. & Hayashi, K. Periodicity of SNP distribution around transcription start sites. BMC Genomics 7, 66 (2006).

    Article  Google Scholar 

  12. Prendergast, J.G. et al. Chromatin structure and evolution in the human genome. BMC Evol. Biol. 7, 72 (2007).

    Article  Google Scholar 

  13. Ying, H., Epps, J., Williams, R. & Huttley, G. Evidence that localized variation in primate sequence divergence arises from an influence of nucleosome placement on DNA repair. Mol. Biol. Evol. 27, 637–649 (2010).

    Article  CAS  Google Scholar 

  14. Sasaki, S. et al. Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323, 401–404 (2009).

    Article  CAS  Google Scholar 

  15. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  16. Schones, D.E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    Article  CAS  Google Scholar 

  17. Jin, C. et al. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  Google Scholar 

  18. Kidd, J.M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  CAS  Google Scholar 

  19. Lohr, D., Corden, J., Tatchell, K., Kovacic, R.T. & Van Holde, K.E. Comparative subunit structure of HeLa, yeast, and chicken erythrocyte chromatin. Proc. Natl. Acad. Sci. USA 74, 79–83 (1977).

    Article  CAS  Google Scholar 

  20. Peckham, H.E. et al. Nucleosome positioning signals in genomic DNA. Genome Res. 17, 1170–1177 (2007).

    Article  CAS  Google Scholar 

  21. Kharchenko, P.V., Woo, C.J., Tolstorukov, M.Y., Kingston, R.E. & Park, P.J. Nucleosome positioning in human HOX gene clusters. Genome Res. 18, 1554–1561 (2008).

    Article  CAS  Google Scholar 

  22. Trifonov, E.N. & Sussman, J.L. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. USA 77, 3816–3820 (1980).

    Article  CAS  Google Scholar 

  23. Satchwell, S.C., Drew, H.R. & Travers, A.A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).

    Article  CAS  Google Scholar 

  24. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  Google Scholar 

  25. Johnson, S.M., Tan, F.J., McCullough, H.L., Riordan, D.P. & Fire, A.Z. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 16, 1505–1516 (2006).

    Article  CAS  Google Scholar 

  26. Mavrich, T.N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    Article  CAS  Google Scholar 

  27. Struhl, K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc. Natl. Acad. Sci. USA 82, 8419–8423 (1985).

    Article  CAS  Google Scholar 

  28. Segal, E. & Widom, J. Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr. Opin. Struct. Biol. 19, 65–71 (2009).

    Article  CAS  Google Scholar 

  29. Olson, W.K., Gorin, A.A., Lu, X.J., Hock, L.M. & Zhurkin, V.B. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA 95, 11163–11168 (1998).

    Article  CAS  Google Scholar 

  30. Tanay, A. & Siggia, E.D. Sequence context affects the rate of short insertions and deletions in flies and primates. Genome Biol. 9, R37 (2008).

    Article  Google Scholar 

  31. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009).

    Article  CAS  Google Scholar 

  32. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).

    Article  CAS  Google Scholar 

  33. Spies, N., Nielsen, C.B., Padgett, R.A. & Burge, C.B . Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 36, 245–254 (2009).

    Article  CAS  Google Scholar 

  34. Wang, Z. & Burge, C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  Google Scholar 

  35. Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  CAS  Google Scholar 

  36. Zhu, J., He, F., Hu, S. & Yu, J. On the nature of human housekeeping genes. Trends Genet. 24, 481–484 (2008).

    Article  CAS  Google Scholar 

  37. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  Google Scholar 

  38. Semple, C.A. & Taylor, M.S. Molecular biology. The structure of change. Science 323, 347–348 (2009).

    Article  CAS  Google Scholar 

  39. Kogan, S. & Trifonov, E.N. Gene splice sites correlate with nucleosome positions. Gene 352, 57–62 (2005).

    Article  CAS  Google Scholar 

  40. Warnecke, T., Batada, N.N. & Hurst, L.D. The impact of the nucleosome code on protein-coding sequence evolution in yeast. PLoS Genet. 4, e1000250 (2008).

    Article  Google Scholar 

  41. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  Google Scholar 

  42. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    Article  CAS  Google Scholar 

  43. Kuhn, R.M. et al. The UCSC Genome Browser Database: update 2009. Nucleic Acids Res. 37, D755–D761 (2009).

    Article  CAS  Google Scholar 

  44. Pruitt, K.D., Tatusova, T. & Maglott, D.R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).

    Article  CAS  Google Scholar 

  45. Wu, T.D. & Watanabe, C.K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Article  CAS  Google Scholar 

  46. Akagi, K., Li, J., Stephens, R.M., Volfovsky, N. & Symer, D.E. Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition. Genome Res. 18, 869–880 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Sunyaev, I. Adzhubei and G. Kryukov for the helpful discussions. This project has been funded in part with federal funds from the US National Institutes of Health (GM082798 and U01HG004258 to P.J.P.; contract no. HHSN261200800001E to R.M.S.). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

M.Y.T. performed all analyses. N.V. and R.M.S. produced the collections of sequence variations. P.J.P. directed the project. M.Y.T. and P.J.P. wrote the manuscript.

Corresponding author

Correspondence to Peter J Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–4 and Supplementary Notes 1 and 2 (PDF 6952 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolstorukov, M., Volfovsky, N., Stephens, R. et al. Impact of chromatin structure on sequence variability in the human genome. Nat Struct Mol Biol 18, 510–515 (2011). https://doi.org/10.1038/nsmb.2012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing