Publications

2016
Wang X*, Lee RS*, Alver BH*, Haswell JR, Wang S, Mieczkowski J, Drier Y, Gillespie SM, Archer TC, Wu JN, Tzvetkov EP, Troisi EC, Pomeroy SL, Biegel JA, Tolstorukov MY, Bernstein BE**, Park PJ**, Roberts CWM**. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nature Genetics 2016;
Mathur R, Alver BH, San Roman AK, Wilson BG, Wang X, Agoston AT, Park PJ, Shivdasani RA, Roberts CWM. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nature Genetics 2016;
Saini N, Roberts SA, Klimczak LJ, Chan K, Grimm SA, Dai S, Fargo DC, Boyer JC, Kaufmann WK, Taylor JA, Lee E, Cortes-Ciriano I, Park PJ, Schurman SH, Malc EP, Mieczkowski PA, Gordenin DA. The impact of environmental and endogenous damage on somatic mutation load in human skin fibroblasts. PLoS genetics 2016;12(10):e1006385.
Day DS*, Zhang B*, Stevens SM, Ferrari F, Larschan EN, Park PJ**, Pu WT**. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 2016;17(1):120.Abstract

BACKGROUND: For many genes, RNA polymerase II stably pauses before transitioning to productive elongation. Although polymerase II pausing has been shown to be a mechanism for regulating transcriptional activation, the extent to which it is involved in control of mammalian gene expression and its relationship to chromatin structure remain poorly understood. RESULTS: Here, we analyze 85 RNA polymerase II chromatin immunoprecipitation (ChIP)-sequencing experiments from 35 different murine and human samples, as well as related genome-wide datasets, to gain new insights into the relationship between polymerase II pausing and gene regulation. Across cell and tissue types, paused genes (pausing index > 2) comprise approximately 60 % of expressed genes and are repeatedly associated with specific biological functions. Paused genes also have lower cell-to-cell expression variability. Increased pausing has a non-linear effect on gene expression levels, with moderately paused genes being expressed more highly than other paused genes. The highest gene expression levels are often achieved through a novel pause-release mechanism driven by high polymerase II initiation. In three datasets examining the impact of extracellular signals, genes responsive to stimulus have slightly lower pausing index on average than non-responsive genes, and rapid gene activation is linked to conditional pause-release. Both chromatin structure and local sequence composition near the transcription start site influence pausing, with divergent features between mammals and Drosophila. Most notably, in mammals pausing is positively correlated with histone H2A.Z occupancy at promoters. CONCLUSIONS: Our results provide new insights into the contribution of RNA polymerase II pausing in mammalian gene regulation and chromatin structure.

Xi R, Lee S, Xia Y, Kim T-M, Park PJ. Copy number analysis of whole-genome data using BIC-seq2 and its application to detection of cancer susceptibility variants. Nucleic Acids Res 2016;Abstract

Whole-genome sequencing data allow detection of copy number variation (CNV) at high resolution. However, estimation based on read coverage along the genome suffers from bias due to GC content and other factors. Here, we develop an algorithm called BIC-seq2 that combines normalization of the data at the nucleotide level and Bayesian information criterion-based segmentation to detect both somatic and germline CNVs accurately. Analysis of simulation data showed that this method outperforms existing methods. We apply this algorithm to low coverage whole-genome sequencing data from peripheral blood of nearly a thousand patients across eleven cancer types in The Cancer Genome Atlas (TCGA) to identify cancer-predisposing CNV regions. We confirm known regions and discover new ones including those covering KMT2C, GOLPH3, ERBB2 and PLAG1 Analysis of colorectal cancer genomes in particular reveals novel recurrent CNVs including deletions at two chromatin-remodeling genes RERE and NPM2 This method will be useful to many researchers interested in profiling CNVs from whole-genome sequencing data.

Yang L*, Lee M-S*, Lu H*, Oh D-Y, Kim YJ, Park D, Park G, Ren X, Bristow CA, Haseley PS, Lee S, Pantazi A, Kucherlapati R, Park W-Y, Scott KL**, Choi Y-L**, Park PJ**. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing. Am J Hum Genet 2016;98(5):843-56.Abstract

Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that the 5' fusion partners of functional fusions are often housekeeping genes, whereas the 3' fusion partners are enriched in tyrosine kinases. We establish the oncogenic potential of ROR1-DNAJC6 and CEP85L-ROS1 fusions by showing that they can promote cell proliferation in vitro and tumor formation in vivo. Furthermore, we found that ∼4% of the samples have massively rearranged chromosomes, many of which are associated with upregulation of oncogenes such as ERBB2 and TERT. Although the sensitivity of detecting structural alterations from exomes is considerably lower than that from whole genomes, this approach will be fruitful for the multitude of exomes that have been and will be generated, both in cancer and in other diseases.

Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MY. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 2016;7:11485.Abstract

Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.

Tica J*, Lee E*, Untergasser A, Meiers S, Garfield DA, Gokcumen O, Furlong EEM, Park PJ, Stütz AM**, Korbel JO**. Next-generation sequencing-based detection of germline L1-mediated transductions. BMC Genomics 2016;17(1):342.Abstract

BACKGROUND: While active LINE-1 (L1) elements possess the ability to mobilize flanking sequences to different genomic loci through a process termed transduction influencing genomic content and structure, an approach for detecting polymorphic germline non-reference transductions in massively-parallel sequencing data has been lacking. RESULTS: Here we present the computational approach TIGER (Transduction Inference in GERmline genomes), enabling the discovery of non-reference L1-mediated transductions by combining L1 discovery with detection of unique insertion sequences and detailed characterization of insertion sites. We employed TIGER to characterize polymorphic transductions in fifteen genomes from non-human primate species (chimpanzee, orangutan and rhesus macaque), as well as in a human genome. We achieved high accuracy as confirmed by PCR and two single molecule DNA sequencing techniques, and uncovered differences in relative rates of transduction between primate species. CONCLUSIONS: By enabling detection of polymorphic transductions, TIGER makes this form of relevant structural variation amenable for population and personal genome analysis.

Lee J-K, Choi Y-L, Kwon M, Park PJ. Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. Annu Rev Pathol 2016;Abstract

During tumor evolution, cancer cells can accumulate numerous genetic alterations, ranging from single nucleotide mutations to whole-chromosomal changes. Although a great deal of progress has been made in the past decades in characterizing genomic alterations, recent cancer genome sequencing studies have provided a wealth of information on the detailed molecular profiles of such alterations in various types of cancers. Here, we review our current understanding of the mechanisms and consequences of cancer genome instability, focusing on the findings uncovered through analysis of exome and whole-genome sequencing data. These analyses have shown that most cancers have evidence of genome instability, and the degree of instability is variable within and between cancer types. Importantly, we describe some recent evidence supporting the idea that chromosomal instability could be a major driving force in tumorigenesis and cancer evolution, actively shaping the genomes of cancer cells to maximize their survival advantage. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease Volume 11 is May 23, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.

Evrony GD*, Lee E*, Park PJ**, Walsh CA**. Resolving rates of mutation in the brain using single-neuron genomics. Elife 2016;5Abstract

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and further claimed these mutation events preferentially impact genes important for neuronal function. We identify errors in single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of false-positive artifacts being mistakenly interpreted as somatic mutation events. Our reanalysis of the data supports a corrected mutation frequency (0.2 per cell) more than fifty-fold lower than reported, inconsistent with the authors' conclusion of 'ubiquitous' L1 mosaicism, but consistent with L1 elements mobilizing occasionally. Through consideration of the challenges and pitfalls identified, we provide a foundation and framework for designing single-cell genomics studies.

Jung YL*, Kang H*, Park PJ, Kuroda MI. Correspondence of Drosophila Polycomb Group proteins with broad H3K27me3 silent domains. Fly 2016;Abstract

The Polycomb group (PcG) proteins are key conserved regulators of development, initially discovered in Drosophila and now strongly implicated in human disease. Nevertheless, differing silencing properties between the Drosophila and mammalian PcG systems have been observed. While specific DNA targeting sites for PcG proteins called Polycomb response elements (PREs) have been identified only in Drosophila, involvement of non-coding RNAs for PcG targeting has been favored in mammals. Another difference lies in the distribution patterns of PcG proteins. In mouse and human cells, PcG proteins show broad distributions, significantly overlapping with H3K27me3 domains. In contrast, only sharp peaks on PRE regions are observed for most PcG proteins in Drosophila, raising the question of how large domains of H3K27me3, up to many tens of kilobases, are formed and maintained in Drosophila. In this Extra View, we provide evidence that PcG distributions on silent chromatin in Drosophila are considerably broader than previously detected. Using BioTAP-XL, a chromatin crosslinking and tandem affinity purification approach, we find a broad, rather than PRE-limited overlap of PcG proteins with H3K27me3, suggesting a conserved spreading mechanism for PcG in flies and mammals.

Ordulu Z, Nucci MR, Dal Cin P, Hollowell ML, Otis CN, Hornick JL, Park PJ, Kim T-M, Quade BJ, Morton CC. Intravenous leiomyomatosis: an unusual intermediate between benign and malignant uterine smooth muscle tumors. Mod Pathol 2016;Abstract

Intravenous leiomyomatosis is an unusual smooth muscle neoplasm with quasi-malignant intravascular growth but a histologically banal appearance. Herein, we report expression and molecular cytogenetic analyses of a series of 12 intravenous leiomyomatosis cases to better understand the pathogenesis of intravenous leiomyomatosis. All cases were analyzed for the expression of HMGA2, MDM2, and CDK4 proteins by immunohistochemistry based on our previous finding of der(14)t(12;14)(q14.3;q24) in intravenous leiomyomatosis. Seven of 12 (58%) intravenous leiomyomatosis cases expressed HMGA2, and none expressed MDM2 or CDK4. Colocalization of hybridization signals for probes from the HMGA2 locus (12q14.3) and from 14q24 by interphase fluorescence in situ hybridization (FISH) was detected in a mean of 89.2% of nuclei in HMGA2-positive cases by immunohistochemistry, but in only 12.4% of nuclei in negative cases, indicating an association of HMGA2 expression and this chromosomal rearrangement (P=8.24 × 10(-10)). Four HMGA2-positive cases had greater than two HMGA2 hybridization signals per cell. No cases showed loss of a hybridization signal by interphase FISH for the frequently deleted region of 7q22 in uterine leiomyomata. One intravenous leiomyomatosis case analyzed by array comparative genomic hybridization revealed complex copy number variations. Finally, expression profiling was performed on three intravenous leiomyomatosis cases. Interestingly, hierarchical cluster analysis of the expression profiles revealed segregation of the intravenous leiomyomatosis cases with leiomyosarcoma rather than with myometrium, uterine leiomyoma of the usual histological type, or plexiform leiomyoma. These findings suggest that intravenous leiomyomatosis cases share some molecular cytogenetic characteristics with uterine leiomyoma, and expression profiles similar to that of leiomyosarcoma cases, further supporting their intermediate, quasi-malignant behavior.Modern Pathology advance online publication, 19 February 2016; doi:10.1038/modpathol.2016.36.

Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, Anjum S, Wang J, Manyam G, Zoppoli P, Ling S, Rao AA, Grifford M, Cherniack AD, Zhang H, Poisson L, Carlotti CG, da Tirapelli DPC, Rao A, Mikkelsen T, Lau CC, Yung AWK, Rabadan R, Huse J, Brat DJ, Lehman NL, Barnholtz-Sloan JS, Zheng S, Hess K, Rao G, Meyerson M, Beroukhim R, Cooper L, Akbani R, Wrensch M, Haussler D, Aldape KD, Laird PW, Gutmann DH, Gutmann DH, Noushmehr H, Iavarone A, Verhaak RGW. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 2016;164(3):550-63.Abstract

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.

Chen F, Zhang Y, Şenbabaoğlu Y, Ciriello G, Yang L, Reznik E, Shuch B, Micevic G, De Velasco G, Shinbrot E, Noble MS, Lu Y, Covington KR, Xi L, Drummond JA, Muzny D, Kang H, Lee J, Tamboli P, Reuter V, Shelley CS, Kaipparettu BA, Bottaro DP, Godwin AK, Gibbs RA, Getz G, Kucherlapati R, Park PJ, Sander C, Henske EP, Zhou JH, Kwiatkowski DJ, Ho TH, Choueiri TK, Hsieh JJ, Akbani R, Mills GB, Hakimi AA, Wheeler DA, Creighton CJ. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Rep 2016;Abstract

On the basis of multidimensional and comprehensive molecular characterization (including DNA methalylation and copy number, RNA, and protein expression), we classified 894 renal cell carcinomas (RCCs) of various histologic types into nine major genomic subtypes. Site of origin within the nephron was one major determinant in the classification, reflecting differences among clear cell, chromophobe, and papillary RCC. Widespread molecular changes associated with TFE3 gene fusion or chromatin modifier genes were present within a specific subtype and spanned multiple subtypes. Differences in patient survival and in alteration of specific pathways (including hypoxia, metabolism, MAP kinase, NRF2-ARE, Hippo, immune checkpoint, and PI3K/AKT/mTOR) could further distinguish the subtypes. Immune checkpoint markers and molecular signatures of T cell infiltrates were both highest in the subtype associated with aggressive clear cell RCC. Differences between the genomic subtypes suggest that therapeutic strategies could be tailored to each RCC disease subset.

2015
De Los Angeles A, Ferrari F, Fujiwara Y, Mathieu R, Lee S, Lee S, Tu H-C, Ross S, Chou S, Nguyen M, Wu Z, Theunissen TW, Powell BE, Imsoonthornruksa S, Chen J, Borkent M, Krupalnik V, Lujan E, Wernig M, Hanna JH, Hochedlinger K, Pei D, Jaenisch R, Deng H, Orkin SH, Park PJ, Daley GQ. Corrigendum: Failure to replicate the STAP cell phenomenon. Nature 2015;
De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch HG, Lensch WM, Lujan E, Pei D, Rossant J, Wernig M, Park PJ, Daley GQ. Corrigendum: Hallmarks of pluripotency. Nature 2015;
Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2015;528(7581):218-24.Abstract

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.

Bersani F, Lee E, Kharchenko PV, Xu AW, Liu M, Xega K, MacKenzie OC, Brannigan BW, Wittner BS, Jung H, Ramaswamy S, Park PJ, Maheswaran S, Ting DT, Haber DA. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci U S A 2015;112(49):15148-53.Abstract

Aberrant transcription of the pericentromeric human satellite II (HSATII) repeat is present in a wide variety of epithelial cancers. In deriving experimental systems to study its deregulation, we observed that HSATII expression is induced in colon cancer cells cultured as xenografts or under nonadherent conditions in vitro, but it is rapidly lost in standard 2D cultures. Unexpectedly, physiological induction of endogenous HSATII RNA, as well as introduction of synthetic HSATII transcripts, generated cDNA intermediates in the form of DNA/RNA hybrids. Single molecule sequencing of tumor xenografts showed that HSATII RNA-derived DNA (rdDNA) molecules are stably incorporated within pericentromeric loci. Suppression of RT activity using small molecule inhibitors reduced HSATII copy gain. Analysis of whole-genome sequencing data revealed that HSATII copy number gain is a common feature in primary human colon tumors and is associated with a lower overall survival. Together, our observations suggest that cancer-associated derepression of specific repetitive sequences can promote their RNA-driven genomic expansion, with potential implications on pericentromeric architecture.

Cancer Genome Atlas Research Network TCGA. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015;163(4):1011-25.Abstract

There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.

Choi J*, Lee S*, Mallard W, Clement K, Tagliazucchi GM, Lim H, Choi IY, Ferrari F, Tsankov AM, Pop R, Lee G, Rinn JL, Meissner A, Park PJ**, Hochedlinger K**. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol 2015;33(11):1173-81.Abstract

The equivalence of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) remains controversial. Here we use genetically matched hESC and hiPSC lines to assess the contribution of cellular origin (hESC vs. hiPSC), the Sendai virus (SeV) reprogramming method and genetic background to transcriptional and DNA methylation patterns while controlling for cell line clonality and sex. We find that transcriptional and epigenetic variation originating from genetic background dominates over variation due to cellular origin or SeV infection. Moreover, the 49 differentially expressed genes we detect between genetically matched hESCs and hiPSCs neither predict functional outcome nor distinguish an independently derived, larger set of unmatched hESC and hiPSC lines. We conclude that hESCs and hiPSCs are molecularly and functionally equivalent and cannot be distinguished by a consistent gene expression signature. Our data further imply that genetic background variation is a major confounding factor for transcriptional and epigenetic comparisons of pluripotent cell lines, explaining some of the previously observed differences between genetically unmatched hESCs and hiPSCs.

Pages